skip to main content


Search for: All records

Creators/Authors contains: "Castro Segura, N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The evolution of accreting X-ray binary systems is closely coupled to the properties of their donor stars. Consequently, we can constrain the evolutionary track a system is by establishing the nature of its donor. Here, we present far-ultraviolet (far-UV) spectroscopy of the transient neutron-star low-mass X-ray binary J1858 in different accretion states (low-hard, high-hard, and soft). All of these spectra exhibit anomalous N v, C iv, Si iv, and He ii lines, suggesting that its donor star has undergone CNO processing. We also determine the donor’s effective temperature, Td ≃ 5700 K, and radius, Rd ≃ 1.7 R⊙, based on photometric observations obtained during quiescence. Lastly, we leverage the transient nature of the system to set an upper limit of $\dot{M}_{\rm acc} \lesssim 10^{-8.5}~{\rm M}_{\odot }~\mathrm{ yr}^{-1}$ on the present-day mass-transfer rate. Combining these with the orbital period of the system, Porb = 21.3 h, we search for viable evolution paths. The initial donor masses in the allowed solutions span the range 1 M⊙ ≲ Md,i ≲ 3.5 M⊙. All but the lowest masses in this range are consistent with the strong CNO-processing signature in the UV line ratios. The present-day donor mass in the permitted tracks are 0.5 M⊙ ≲ Md,obs ≲ 1.3 M⊙, higher than suggested by eclipse modelling. Since Porb is close to the so-called bifurcation period, both converging and diverging binary tracks are permitted. If the former is confirmed, J1858 will end its life as an ultracompact system with a substellar donor.

     
    more » « less
  2. ABSTRACT We present an analysis of DES17X1boj and DES16E2bjy, two peculiar transients discovered by the Dark Energy Survey (DES). They exhibit nearly identical double-peaked light curves that reach very different maximum luminosities (Mr = −15.4 and −17.9, respectively). The light-curve evolution of these events is highly atypical and has not been reported before. The transients are found in different host environments: DES17X1boj was found near the nucleus of a spiral galaxy, while DES16E2bjy is located in the outskirts of a passive red galaxy. Early photometric data are well fitted with a blackbody and the resulting moderate photospheric expansion velocities (1800  km s−1 for DES17X1boj and 4800  km s−1 for DES16E2bjy) suggest an explosive or eruptive origin. Additionally, a feature identified as high-velocity Ca ii absorption ($v$ ≈ 9400 km s−1) in the near-peak spectrum of DES17X1boj may imply that it is a supernova. While similar light-curve evolution suggests a similar physical origin for these two transients, we are not able to identify or characterize the progenitors. 
    more » « less